POWER CLOSURE AND THE ENGEL CONDITION*

BY

DAVID M. RILEY

Department of Mathematics, The University of Alabama
Tuscaloosa, AL 35487-0350, USA
e-mail: driley@gp.as.ua.edu

AND

JAMES F. SEMPLE

Department of Mathematics and Statistics
Carleton University, Ottawa, Canada K1S 5B6
e-mail: jsemple@maqi.com

ABSTRACT

A Lie p-algebra L is called n-power closed if, in every section of L, any sum of p^{i+n} th powers is a p^i th power (i>0). It is easy to see that if L is p^n -Engel then it is n-power closed. We establish a partial converse to this statement: if L is residually nilpotent and n-power closed for some $n \geq 0$ then L is $(3p^{n+2}+1)$ -Engel if p>2 and $(3\cdot 2^{n+3}+1)$ -Engel if p=2. In particular, then L is locally nilpotent by a theorem of Zel'manov. We deduce that a finitely generated pro-p group is a Lie group over the p-adic field if and only if its associated Lie p-algebra is n-power closed for some n. We also deduce that any associative algebra R generated by nilpotent elements satisfies an identity of the form $(x+y)^{p^n}=x^{p^n}+y^{p^n}$ for some $n\geq 1$ if and only if R satisfies the Engel condition.

^{*} This project was supported by the CNR in Italy and NSF-EPSCoR in Alabama during the first author's stay at the Università di Palermo.

Received April 25, 1995 and in revised form August 16, 1995

1. Introduction

The purpose of this article is to study certain additive properties of the p-map of a Lie p-algebra that turn out to be intimately related to the Engel condition. If a Lie p-algebra L satisfies the identity

$$(x+y)^{p^n} = x^{p^n} + y^{p^n}$$

we shall say that L is p^n -additive; we call L power-additive if L is p^n -additive for some $n \geq 1$. Power-additive associative algebras were studied by the first author in [R2]. There it was shown that an associative algebra R over an infinite field of characteristic p > 0 is power-additive if and only if R satisfies the Engel condition. This result does not extend to the class of all Lie p-algebras, however, because satisfying the Engel condition is insufficient cause to conclude that a non-associative Lie p-algebra is power-additive. Perhaps the most simple counterexample is the following.

Example 1.1: Let $L = \langle x, y \rangle$ be the free nilpotent 2-generated Lie 3-algebra of class 3. Then $(a+b)^3 = a^3 + b^3 + [a,b-a,b-a]$ for all a,b in L. Because [x,y-x,y-x] is central but not nil, L cannot be power-additive.

Therefore, in order to extend this characterisation of associative algebras satisfying the Engel condition to general Lie p-algebras, we need to weaken somewhat the notion of power-additivity. Adopting the terminology originally used by Mann ([M]) and Shalev ([Sh2]) to study an analogous property in p-groups, we shall say that L is n-power closed if, in every section of L, any sum of two p^{i+n} th powers is a p^i th power (i > 0). It is not difficult to verify that if L is p^n -additive then it is n-power closed, but, more to the point, we have the following straightforward result.

LEMMA 1.2: Let L be any Lie p-algebra. Then the implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ hold for the following statements:

- 1. L is p^n -Engel.
- 2. L satisfies the identity $[x^{p^n}, y^{p^n}] = 0$.
- 3. L satisfies the identity $x^{p^{n+1}} + y^{p^{n+1}} = (x^{p^n} + y^{p^n})^p$.
- 4. L is n-power closed.

Proof: Assume that L satisfies the p^n -Engel condition:

$$x(\operatorname{ad} y)^{p^n} = [x,_{p^n} y] = 0.$$

This is equivalent to L satisfying the identity $[x, y^{p^n}] = 0$. In particular, then L satisfies $[x^{p^n}, y^{p^n}] = 0$, and hence satisfies $x^{p^{n+1}} + y^{p^{n+1}} = (x^{p^n} + y^{p^n})^p$. By replacing x and y by x^p and y^p , respectively, it follows by induction that L satisfies the identities $x^{p^{n+i}} + y^{p^{n+i}} = (x^{p^n} + y^{p^n})^{p^i}$ for all i > 0. This clearly is sufficient to conclude that L is n-power closed.

In fact, for a large class of Lie p-algebras the property of being n-power closed for some $n \geq 0$ turns out to be equivalent to satisfying the Engel condition.

THEOREM A: Let L be a residually nilpotent Lie p-algebra, and suppose that L is n-power closed for some $n \geq 0$. Then L satisfies the $(3p^{n+2}+1)$ -Engel condition in the case that p is odd, and the $(3 \cdot 2^{n+3}+1)$ -Engel condition in the case that p=2.

The following is a direct consequence of Theorem A and Lemma 1.1.

COROLLARY A1: Let L be a residually nilpotent Lie p-algebra. Then the following properties are equivalent:

- 1. L satisfies the Engel condition.
- 2. L satisfies the identity $[x^{p^n}, y^{p^n}] = 0$ for some $n \ge 0$.
- 3. L satisfies the identity $x^{p^{n+1}} + y^{p^{n+1}} = (x^{p^n} + y^{p^n})^p$ for some n > 0.
- 4. L is n-power closed for some $n \geq 0$.

Using Zel'manov's theorem ([Z1] and [Z2]) on the local nilpotence of modular Lie algebras satisfying the Engel condition, we can then deduce that for finitely generated Lie p-algebras each of the properties listed in Corollary A1 is equivalent to nilpotence.

COROLLARY A2: Let L be a d-generated residually nilpotent Lie p-algebra. If L is n-power closed for some $n \geq 0$ then L is nilpotent of class bounded by a fixed function of n, p, and d only.

Proof: According to Theorem A, L satisfies the m-Engel condition for some fixed function m depending on n and p only. Therefore, by Zel'manov's theorem, L is nilpotent of class at most c, where c is the class of the relatively-free d-generated Lie p-algebra satisfying the m-Engel condition.

As a further application of Theorem A we are able to eliminate the restriction on the cardinality of base field in the result from [R2] mentioned above, but at the cost of requiring the algebra to be generated by nilpotent elements. Implicit

in the proof is a deep theorem of Braun [Br]: the Jacobson radical of an affine PI-algebra is nilpotent.

THEOREM B: Let R be an associative algebra over any field of characteristic p > 0, and suppose that R can generated by nilpotent elements. Then the following properties are equivalent:

- 1. R satisfies the Engel condition.
- 2. R satisfies $[x^{p^n}, y^{p^n}] = 0$ for some $n \ge 0$.
- 3. R satisfies $x^{p^{n+1}} + y^{p^{n+1}} = (x^{p^n} + y^{p^n})^p$ for some $n \ge 0$.
- 4. R is power-additive.

By Shalev's associative algebra analogue [Sh1] of Zel'manov's theorem referred to above, if R is affine then the properties listed above in Theorem B are each equivalent to R being nilpotent as a Lie algebra.

Our final application is a characterisation of p-adic analytic pro-p groups G in terms of the structure of their associated Lie p-algebras $\mathcal{L}(G)$. See Section 5 for the definition of $\mathcal{L}(G)$. A broad discussion of pro-p groups can be found in the monograph [DDMS].

THEOREM C: Let G be a finitely generated pro-p group. Then G is p-adic analytic if and only if $\mathcal{L}(G)$ is n-power closed for some $n \geq 0$.

Other characterisations of the p-adic analyticity of G in terms of the structure of $\mathcal{L}(G)$ were given previously by Lazard [L], Shalev [Sh3], and the present authors in [R1] and [RS]. The proof of Theorem C will use Lazard's theorem: the analyticity of G and the nilpotence of $\mathcal{L}(G)$ are equivalent conditions. Shalev gave another criterion for analyticity in [Sh2]; namely, a finitely generated pro-p group is p-adic analytic if and only if it is m-power closed for some m. Theorem C now yields the following immediate consequence.

COROLLARY C1: Let G be a finitely generated pro-p group. Then G is m-power closed for some $m \geq 0$ if and only if $\mathcal{L}(G)$ is n-power closed for some $n \geq 0$.

It is important to stress that the ideas we employ below follow closely those used by Shalev to prove [Sh2, Corollary], which may be viewed as a group-theoretical analogue of Theorem A. Many of the intermediate steps also have their group-theoretic counterparts. Let us also point out that the concept of a powerful Lie *p*-algebra, which was studied in detail by the authors in [RS], was

originally inspired by the Lubotzky–Mann theory of powerful p-groups ([M] and [LM1]).

2. The finite dimensional case

Let F be a fixed base field of characteristic p > 0, and let \mathcal{F}_p denote the class of all finite dimensional Lie p-algebras over F whose p-map acts nilpotently. By Engel's theorem, all such algebras are nilpotent. Throughout this section we shall assume that L lies in the class \mathcal{F}_p .

The heart of our argument is to show that the only obstruction to L satisfying a given Engel condition is the 'involvement' in L of certain canonical 2-generated Lie p-algebras. We say that a Lie p-algebra W is involved in L if W is isomorphic to a section of L. By a section of L we mean a quotient H/K, where K is an ideal of H and H is a subalgebra of L; we say that H/K is a section of ideals of L if H is an ideal of L. All subalgebras are assumed to be closed under the p-map.

Let us now define the restricted-Lie-theoretic analogue of the group wreath product $C_p \wr C_{p^n}$. Wreath products of Lie algebras are discussed in [B].

Definition 2.1: For each integer $n \geq 1$, let W_n denote the Lie p-algebra generated by x and y subject only to the following relations:

- 1. $a_i = [x, y]$ and $b_i = y^{p^i}$ for each $i \ge 0$;
- 2. $[a_i, a_j] = 0$ and $a_i^p = 0$ for each $i, j \ge 0$; and,
- 3. $a_{p^n} = b_n = 0$.

LEMMA 2.2: The following statements hold for all n.

- 1. W_n has basis $a_0, a_1, \ldots, a_{p^n-1}, b_0, b_1, \ldots, b_{n-1}$.
- 2. $(x+y)^{p^j} = a_{p^j-1} + b_j$ for all $1 \le j \le n$.
- 3. W_n is not p^n -additive.
- 4. $a_{p^{n-1}-1}$ is not a p-power in W_n .

Proof: 1. This is a straightforward consequence of the definition.

2. Let us begin with the case j=1 and let λ be an indeterminate. Then

$$(x+y)^p = x^p + y^p + \sum_{i=1}^{p-1} s_i(x,y)$$

where $is_i(x,y)$ is defined to be the coefficient of λ^{i-1} in the expansion of $[x,p-1](\lambda x+y)$. But clearly

$$[x,_{p-1}(\lambda x + y)] = [x,_{p-1}y] = a_{p-1}.$$

So, $s_1(x,y) = a_{p-1}$ and $is_i(x,y) = 0$ for all $i \neq 1$. Thus $(x+y)^p = a_{p-1} + b_1$ as claimed. Assume now by induction that the result holds for j-1 < n. Then

$$(x+y)^{p^{j}} = ((x+y)^{p^{j-1}})^{p}$$

$$= (a_{p^{j-1}-1} + b_{j-1})^{p}$$

$$= b_{j} + \sum_{i=1}^{p-1} s_{i}(a_{p^{j-1}-1}, b_{j-1}).$$

But since

$$[a_{p^{j-1}-1}, p-1 (\lambda a_{p^{j-1}-1} + b_{j-1})] = [x, p^{j-1}-1, y, (p-1)p^{j-1}, y]$$
$$= a_{p^{j}-1},$$

the result follows as for the case j = 1.

- 3. By part (2) we have $(x+y)^{p^n} = a_{p^n-1} \neq 0$. Therefore because $x^{p^n} = y^{p^n} = 0$, W_n is not p^n -additive.
- 4. To the contrary, assume that $a_{p^{n-1}-1} = z^p = (a+b)^p$, where $a = \alpha_0 a_0 + \cdots + \alpha_{p^n-1} a_{p^n-1}$ and $b = \beta_0 b_0 + \cdots + \beta_{n-1} b_{n-1}$, where the α_i and β_j are scalars. Then arguing as in part (2) we find that

$$0 = z^{p^{2}}$$

$$= (a^{p} + b^{p} + [a,_{p-1} b])^{p}$$

$$= b^{p^{2}} + [a,_{p-1} b]^{p} + [[a,_{p-1} b],_{p-1} b^{p}]$$

$$= b^{p^{2}} + [a,_{p^{2}-1} b].$$

Since b^{p^2} and $[a,_{p^2-1}b]$ are linearly independent, they must therefore both be zero. Now

$$0 = b^{p^2} = \beta_0^{p^2} b_0^{p^2} + \dots + \beta_{n-1}^{p^2} b_{n-1}^{p^2} = \beta_0^{p^2} y^{p^2} + \dots + \beta_{n-3}^{p^2} y^{p^{n-1}}$$

so that $\beta_0 = \cdots = \beta_{n-3} = 0$, and hence $b = \beta_{n-2} y^{p^{n-2}} + \beta_{n-1} y^{p^{n-1}}$. This implies that

$$a_{p^{n-1}-1} = z^p = b^p + [a_{p-1}b] = \beta_{n-2}^p y^{p^{n-1}} + [a_{p-1}b].$$

Again by linear independence this yields $\beta_{n-2}^p=0$, so that $b=\beta_{n-1}y^{p^{n-1}}$. However, then

$$a_{p^{n-1}-1} = z^p = [a_{p-1} (\beta_{n-1} y^{p^{n-1}})],$$

the latter being contained in the span of

$$\{a_{(p-1)p^{n-1}}, a_{(p-1)p^{n-1}+1}, \ldots\}.$$

Now using part (1) once more, we finally obtain the desired contradiction because $p^{n-1} - 1 < (p-1)p^{n-1}$ for all $n \ge 1$.

COROLLARY 2.3: W_{n+2} is not n-power closed $(n \ge 0)$.

Proof: From above we know that $(x+y)^{p^{n+1}} + (-y)^{p^{n+1}} = a_{p^{n+1}-1}$ is not a p-power in $W_{p^{n+2}}$. The result now follows immediately from the definition of being n-power closed.

It is now clear that if L is n-power closed then it cannot involve W_{n+2} . We shall prove that this latter condition forces L to contain a large 'powerful' ideal. But first, we introduce some more notation. Let us write $\gamma_i(L)$ for the restricted closure of the ith term of the lower central series of L, and denote by L^{p^n} the ideal of L generated by elements x^{p^n} , x in L. We often abbreviate $\gamma_2(L)$ by L', and we let $\Phi(L) = L' + L^p$ represent the Frattini subalgebra of L. The centre of L will be written as $\zeta(L)$. Finally, as in [RS], we say that L (in \mathcal{F}_p) is powerful provided that $L' \subseteq L^p$ when p is odd, and $L' \subseteq L^4$ when p = 2.

The next lemma is easily deduced from Lincoln and Towers, [LT].

LEMMA 2.4: Every maximal subalgebra of L is an ideal of codimension 1.

We are now ready to prove Lie-theoretic analogues of the *p*-group results [Sh2, Lemma], [Sh2, Proposition] and [Sh2, Theorem], respectively.

LEMMA 2.5: Let M be an ideal of L which centralises every abelian section of ideals of L on which the p-map acts trivially. If p > 2 then M is powerful; if p = 2 then the ideal M^2 of L is powerful.

Proof: We use induction on dim M, $M \neq 0$. First consider the case $p \geq 3$. The inclusion $M^p + [M, L] < M$ is proper. Take a subalgebra N satisfying

$$M^p + [M, L] \le N < M,$$

and assume N is maximal in M. Then by the preceding lemma we see that N is a ideal of L with dim M/N=1. By the induction hypothesis N is powerful, so we may factor L by $N^p=\Phi(N)$ to assume that N is abelian with trivial p-map.

Now the hypothesis on M implies that [M, N] = 0. Thus M contains a central ideal of codimension 1, and hence is abelian.

The proof for p=2 is similar. Notice that if $N \triangleleft L$ then

$$N' \subseteq N^2 = \Phi(N) \triangleleft L$$
.

Now write $N = M^2$. Again we have $N^2 + [N, L] < N$, so choose a maximal subalgebra N_1 of N which contains $N^2 + [N, L]$. By the induction hypothesis N_1 is powerful, so we may factor L by the ideal

$$\Phi(\Phi(N_1)) = (N_1^2)^2 = N_1^4$$

(cf. [RS, Proposition 5.2]). Then by the assumption on M we have $[N_1, M] \subseteq N_1^2$ and $[N_1^2, M] \subseteq (N_1^2)^2 = 0$. Thus in particular $[N_1, M^2] = 0$, so that N_1 is central in N. Now because dim $N/N_1 = 1$, it follows that N is abelian, as required.

PROPOSITION 2.6: If L does not involve W_n , then L^{p^n} is powerful if p is odd and $(L^{2^n})^2$ is powerful if p=2.

Proof: By the previous lemma, it suffices to show that if $N \triangleleft L$ then

$$[N, L^{p^n}] \subseteq \Phi(N).$$

Suppose then, to the contrary, that there exists an ideal N of L such that L^{p^n} does not act trivially on $N/\Phi(N)$, and replace L by $L/\Phi(N)$ to assume that N is abelian and that the p-map acts trivially on N. Then there exist elements $x \in N$ and $y \in L$ such that $[x, y^{p^n}] \neq 0$. In particular, $[x, p^{n-1} y] \neq 0$. Replacing x by [x, y] for a suitable integer i we may assume that $[x, p^{n-1} y] \neq 0$ but $[x, p^n y] = 0$. Consider now the subalgebras $H = \langle x, y \rangle$ and $K = \langle y^{p^n} \rangle$. Then K is a central ideal of H and the section H/K of L is isomorphic to W_n , contradicting our hypothesis.

COROLLARY 2.7: If L does not involve W_n then L is $3p^n$ -Engel if p is odd, and $3 \cdot 2^{n+1}$ -Engel if p = 2.

Proof: First observe that every powerful Lie *p*-algebra I in \mathcal{F}_p is nilpotent of class at most 2. Indeed, if p > 2 then

$$[I,I,I]\subseteq [I^p,I]\subseteq \gamma_{p+1}(I)$$

forces $\gamma_3(I) = 0$ by nilpotence. A similar argument works in the p = 2 case.

Next suppose again that p > 2. Then, according to Proposition 2.6, $I = L^{p^n}$ is powerful, and hence $\gamma_3(I) = 0$. Now let x, y be arbitrary elements of L. Then because I is an ideal of L, this yields

$$[x, 3_{p^n} y] = [x, y^{p^n}, y^{p^n}, y^{p^n}] \in \gamma_3(I) = 0,$$

as required.

The proof for p=2 is similar: because $\gamma_3((L^{2^n})^2)=0$, we may deduce that $[x,_{3\cdot 2^{n+1}}y]=0$.

Finally, combining Corollaries 2.3 and 2.7 above we obtain the primary result of this section.

THEOREM 2.8: If $L \in \mathcal{F}_p$ is n-power closed then L is $3p^{n+2}$ -Engel if p > 2 and $3 \cdot 2^{n+3}$ -Engel if p = 2.

3. Proof of Theorem A

When we say that a Lie p-algebra L is residually nilpotent, we intend this to be interpreted in the category of Lie p-algebras.

To prove Theorem A, suppose that L is n-power closed and, for the sake of simplicity, that p is odd. Certainly it suffices to assume as well that L is 2-generated. Thus, in the case that L is nilpotent, $L/\zeta(L)$ lies in the class \mathcal{F}_p . Therefore, by Theorem 2.8, $L/\zeta(L)$ satisfies the $3p^{n+2}$ -Engel condition, and hence L is $(3p^{n+2}+1)$ -Engel. Finally then, assume only that L is residually nilpotent. Then for every x, y in L we have

$$[x,_{3p^n+2+1}y] \in \bigcap_{i \ge 1} \gamma_i(L) = 0. \quad \blacksquare$$

4. Proof of Theorem B

The implications $(1)\Rightarrow(2)\Rightarrow(3)$ follow immediately from Lemma 1.1, while $(1)\Rightarrow(4)$ follows directly from [R2, Theorem B]. To complete the proof of our Theorem B, it suffices to assume that R satisfies a polynomial identity which, firstly, implies n-power closure for some fixed n and, secondly, is a non-matrix identity (which is to say, it is not satisfied by the algebra of all (2×2) -matrices over the primary subfield of F). Consider now arbitrary elements x, y of R, and

write S for the associative subalgebra of R generated by the finitely many nilpotent elements required to express x and y. Denote by J(S) the Jacobson radical of S. Using standard PI-theory, we find that that S/J(S) must be commutative because it satisfies a non-matrix identity. Consequently, S/J(S) is nilpotent since it is generated by finitely many nilpotent elements. Using Braun's theorem [Br], it follows that S itself is nilpotent. Now let S be the restricted Lie subalgebra of S generated by S and S and S and S it follows that S is finite dimensional with nilpotent S map. But then, by Theorem S and S satisfies an Engel condition of degree bounded by a specific function of S and S only. Since S and S were arbitrary, the result follows.

5. Proof of Theorem C

The associated Lie p-algebra (over \mathbb{F}_p) of an arbitrary group G is given by:

$$\mathcal{L}(G) = \bigoplus_{m>1} D_m(G)/D_{m+1}(G).$$

Here $D_m(G)$ represents the mth dimension subgroup of G given by

$$D_m(G) = G \cap (1 + \Delta^n),$$

where Δ denotes the augmentation ideal of the group algebra \mathbb{F}_pG . The operations on $\mathcal{L}(G)$ are induced by commutation and exponentiation in G. See [L] for details.

Now suppose that G is a d-generated pro-p group. Then it is well-known that $\mathcal{L}(G)$ is d-generated and residually- \mathcal{F}_p : see [RS], for example. Therefore, by Corollary A2, $\mathcal{L}(G)$ is n-power closed for some n if and only if $\mathcal{L}(G)$ is nilpotent. But, as was proved in [L], this latter condition is equivalent to G being p-adic analytic.

ACKNOWLEDGEMENT: The authors are grateful to the referee for pointing out some important oversights in the original manuscript.

References

- [B] Yu. Bahturin, Identical Relations in Lie Algebra, VNU Science Press, 1987.
- [Br] A. Braun, The nilpotency of the radical in finitely generated PI-rings, Journal of Algebra 89 (1984), 375–396.

- [DDMS] J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic Pro-p Groups, London Mathematical Society Lecture Note Series 157, Cambridge University Press, 1991.
- [L] M. Lazard, Groupes analytiques p-adiques, Publications Mathématiques de l'Institute Hautes Études Scientifiques 26 (1965).
- [LT] M. Lincoln and D. Towers, Frattini theory for restricted Lie algebras, Archiv der Mathematik 45 (1985), 101–110.
- [LM1] A. Lubotzky and A. Mann, Powerful p-groups I: finite groups, Journal of Algebra 105 (1987), 484–505.
- [LM2] A. Lubotzky and A. Mann, Powerful p-groups II: p-adic analytic groups, Journal of Algebra 105 (1987), 506-515.
- [M] A. Mann, On the power structure of p-groups, I, Journal of Algebra **42** (1976), 121–135.
- [R1] D. M. Riley, Analytic pro-p groups and their graded group rings, Journal of Pure and Applied Algebra 90 (1993), 69-76.
- [R2] D. M. Riley, Algebras generated by nilpotent elements of bounded index, preprint, 1995.
- [RS] D. M. Riley and J. F. Semple, Completion of restricted Lie algebras, Israel Journal of Mathematics 86 (1994), 277-299.
- [Sh1] A. Shalev, On associative algebras satisfying the Engel condition, Israel Journal of Mathematics 67 (1989), 287–290.
- [Sh2] A. Shalev, Characterization of p-adic analytic groups in terms of wreath products, Journal of Algebra 145 (1992), 204–208.
- [Sh3] A. Shalev, Polynomial identities in graded group rings, restricted Lie algebras, and p-adic analytic groups, Transactions of the American Mathematical Society 337 (1993), 451–462.
- [SF] H. Strade and R. Farnsteiner, Modular Lie Algebras, Marcel Dekker, New York, 1988.
- [Z1] E. I. Zel'manov, Solution of the restricted Burnside problem for groups of odd exponent, Mathematics of the USSR-Izvestiya 36 (1991), 41-60.
- [Z2] E. I. Zel'manov, Solution of the restricted Burnside problem for 2-groups,
 Mathematics of the USSR-Sbornik 72 (1992), 543-565.